elasticsearch ik pingyin 分词器的安装和使用

https://blog.csdn.net/Li_work/article/details/78086552

https://www.cnblogs.com/xing901022/p/5910139.html

https://blog.csdn.net/wwd0501/article/details/80622669

ES的核心就是搜索,

那么用ES不得不提到ES的搜索机制。

提搜索机制 就不得不提到 index的mapping 里的分词器

我们在搭建的过程中,默认通过 ip:9200/index 来创建一个索引。

这时的mapping为es默认的mapping, 里面的分词器为内置的standard

当我们进行 类似于 Ip/index/type/1 -d{   name: "zhang san",desc:" a beautiful boy " } 

插入一条文档这样操作时,mapping会自动的 发现 两个字段 name  desc,

并且自动识别两个字段的类型为 String 并进行存储。

什么是mapping 呢

ES的mapping非常类似于静态语言中的数据类型:

声明一个变量为int类型的变量, 以后这个变量都只能存储int类型的数据。同样的, 一个number类型的mapping字段只能存储number类型的数据。

mapping还定义了  ES如何去索引到数据以及数据是否能被搜索到。

当你的查询没有返回相应的数据, 你的mapping很有可能有问题。当你拿不准的时候, 直接检查你的mapping。

Ip/index/_mapping?pretty

索引Mapping的创建 删除 修改。参考 http://www.cnblogs.com/zhaijunming5/p/6426940.html

搜索默认用的是,mapping的内置分词器为 standard 来我们测试一下,

/index/_analyze?analyzer=standard&text=我爱你我的家&pretty  返回结果

{
  "tokens" : [
    {
      "token" : "我",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "<IDEOGRAPHIC>",
      "position" : 0
    },
    {
      "token" : "爱",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "<IDEOGRAPHIC>",
      "position" : 1
    },
    {
      "token" : "你",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "<IDEOGRAPHIC>",
      "position" : 2
    },
    {
      "token" : "我",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "<IDEOGRAPHIC>",
      "position" : 3
    },
    {
      "token" : "的",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "<IDEOGRAPHIC>",
      "position" : 4
    },
    {
      "token" : "家",
      "start_offset" : 5,
      "end_offset" : 6,
      "type" : "<IDEOGRAPHIC>",
      "position" : 5
    }
  ]
}

一个字一个字的蹦 好蛋疼,如果用 我爱你 都搜不出来,对中文的支持太蛋疼了。
所以我们要换一个分词器,IK

先测试下IK 的结果

{
  "tokens" : [
    {
      "token" : "我爱你",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "爱你",
      "start_offset" : 1,
      "end_offset" : 3,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "你我",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "的",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "CN_CHAR",
      "position" : 3
    },
    {
      "token" : "家",
      "start_offset" : 5,
      "end_offset" : 6,
      "type" : "CN_CHAR",
      "position" : 4
    }
  ]
}

很明显 IK分词 就友好了很多。
ik 带有两个分词器 ,这里用的是ik_max_word
ik_max_word :会将文本做最细粒度的拆分;尽可能多的拆分出词语 
ik_smart:会做最粗粒度的拆分;已被分出的词语将不会再次被其它词语占有 

那么下面我们来讲 5.6.1 的IK 安装过程。

参考 github原文  https://github.com/medcl/elasticsearch-analysis-ik

Install
1.download or compile   

optional 1 - download pre-build package from here: https://github.com/medcl/elasticsearch-analysis-ik/releases

unzip plugin to folder your-es-root/plugins/

optional 2 - use elasticsearch-plugin to install ( version > v5.5.1 ):

./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v5.6.1/elasticsearch-analysis-ik-5.6.1.zip

2.restart elasticsearch

方法1:下载zip包,解压到 your-es-home/plugs 下 
方法2 使用es插件下载 版本要大于5.5.1  

最后一步,重启ES

很简单,

因为索引的Mapping不可以删除,所以我们新建一个索引进行测试。

create a index
 
curl -XPUT http://localhost:9200/index
2.create a mapping
 
curl -XPOST http://localhost:9200/index/fulltext/_mapping -d'
{
        "properties": {
            "content": {
                "type": "text",
                "analyzer": "ik_max_word",
                "search_analyzer": "ik_max_word"
            }
        }
    
}'
3.index some docs
curl -XPOST http://localhost:9200/index/fulltext/1 -d'
{"content":"美国留给伊拉克的是个烂摊子吗"}
'
curl -XPOST http://localhost:9200/index/fulltext/2 -d'
{"content":"公安部:各地校车将享最高路权"}
'
curl -XPOST http://localhost:9200/index/fulltext/3 -d'
{"content":"中韩渔警冲突调查:韩警平均每天扣1艘中国渔船"}
'
curl -XPOST http://localhost:9200/index/fulltext/4 -d'
{"content":"中国驻洛杉矶领事馆遭亚裔男子枪击 嫌犯已自首"}
'
4.query with highlighting
curl -XPOST http://localhost:9200/index/fulltext/_search  -d'
{
    "query" : { "match" : { "content" : "中国" }},
    "highlight" : {
        "pre_tags" : ["<tag1>", "<tag2>"],
        "post_tags" : ["</tag1>", "</tag2>"],
        "fields" : {
            "content" : {}
        }
    }
}
'
Result
{
    "took": 14,
    "timed_out": false,
    "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
    },
    "hits": {
        "total": 2,
        "max_score": 2,
        "hits": [
            {
                "_index": "index",
                "_type": "fulltext",
                "_id": "4",
                "_score": 2,
                "_source": {
                    "content": "中国驻洛杉矶领事馆遭亚裔男子枪击 嫌犯已自首"
                },
                "highlight": {
                    "content": [
                        "<tag1>中国</tag1>驻洛杉矶领事馆遭亚裔男子枪击 嫌犯已自首 "
                    ]
                }
            },
            {
                "_index": "index",
                "_type": "fulltext",
                "_id": "3",
                "_score": 2,
                "_source": {
                    "content": "中韩渔警冲突调查:韩警平均每天扣1艘中国渔船"
                },
                "highlight": {
                    "content": [
                        "均每天扣1艘<tag1>中国</tag1>渔船 "
                    ]
                }
            }
        ]
    }
}
然后测试搜索正常

下面开始
pinyin的分词器使用   参考原文 https://github.com/medcl/elasticsearch-analysis-pinyin

首先来看下pinyin分词器 对于我爱你我的家的分词效果

{
  "tokens" : [
    {
      "token" : "wo",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "word",
      "position" : 0
    },
    {
      "token" : "ai",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "word",
      "position" : 1
    },
    {
      "token" : "ni",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "word",
      "position" : 2
    },
    {
      "token" : "wo",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "word",
      "position" : 3
    },
    {
      "token" : "de",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "word",
      "position" : 4
    },
    {
      "token" : "jia",
      "start_offset" : 5,
      "end_offset" : 6,
      "type" : "word",
      "position" : 5
    },
    {
      "token" : "wanwdj",
      "start_offset" : 0,
      "end_offset" : 6,
      "type" : "word",
      "position" : 5
    }
  ]
}

OK,那么我们进行安装,使用
pinyin的分词器和IK一样 下载ZIP,解压到plugs 下 pinyin文件夹  重启。

根据官方git地址 测试案例 整合一个索引进行 数据的拼音和 中文搜索

首先,我们穿创建一个索引 Index2  在里面设置一个自定义的分析器 这个分析器指向了拼音

curl -XPUT "http://localhost:9200/index2/" -d'
{
    "index": {
        "analysis": {
            "analyzer": {
                "ik_pinyin_analyzer": {
                    "type": "custom",
                    "tokenizer": "ik_smart",
                    "filter": ["my_pinyin", "word_delimiter"]
                }
            },
            "filter": {
                "my_pinyin": {
                    "type": "pinyin",
                    "first_letter": "prefix",
                    "padding_char": " "
                }
            }
        }
    }
}'

创建type message 并设置message的mapping

设置了两个字段,name desc  

name设置为拼音搜索,desc设置为IK搜索

curl -XPOST http://localhost:9200/index2/message/_mapping -d'
{ "message": {
"properties": {
            "name": {
               "type": "text",
               "store": "no",
               "term_vector": "with_positions_offsets",
               "analyzer": "ik_pinyin_analyzer",
               "boost": 10},
"desc":{"type": "text","analyzer": "ik_max_word","search_analyzer": "ik_max_word"}}}}'

插入数据,我这里插入了6条数据进行相关索引
{
  "took" : 5,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 6,
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "index2",
        "_type" : "message",
        "_id" : "5",
        "_score" : 1.0,
        "_source" : {
          "name" : "我的宝贝",
          "desc" : "骑车在沿途的风景树"
        }
      },
      {
        "_index" : "index2",
        "_type" : "message",
        "_id" : "2",
        "_score" : 1.0,
        "_source" : {
          "name" : "zhangsan",
          "desc" : "阿斯顿发放"
        }
      },
      {
        "_index" : "index2",
        "_type" : "message",
        "_id" : "4",
        "_score" : 1.0,
        "_source" : {
          "name" : "张三",
          "desc" : "从淘汰率的赫尔"
        }
      },
      {
        "_index" : "index2",
        "_type" : "message",
        "_id" : "6",
        "_score" : 1.0,
        "_source" : {
          "name" : "丁雪峰",
          "desc" : "依然爱你我的梦"
        }
      },
      {
        "_index" : "index2",
        "_type" : "message",
        "_id" : "1",
        "_score" : 1.0,
        "_source" : {
          "name" : "李连杰",
          "desc" : "谢谢我吧我爱你"
        }
      },
      {
        "_index" : "index2",
        "_type" : "message",
        "_id" : "3",
        "_score" : 1.0,
        "_source" : {
          "name" : "刘德华",
          "desc" : "我爱你我的家"
        }
      }
    ]
  }
}
数据测试 ,Name搜索正常 desc ik搜索正常!

    A+
发布日期:2020年05月09日  所属分类:未分类

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: